Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Emerg Infect Dis ; 30(2): 380-383, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270112

ABSTRACT

We conducted surveillance studies in Sinaloa, Mexico, to determine the circulation of tick-borne relapsing fever spirochetes. We collected argasid ticks from a home in the village of Camayeca and isolated spirochetes. Genomic analysis indicated that Borrelia turicatae infection is a threat to those living in resource-limited settings.


Subject(s)
Borrelia Infections , Borrelia , Relapsing Fever , Ticks , Animals , Mexico/epidemiology , Borrelia/genetics , Relapsing Fever/epidemiology , Borrelia Infections/epidemiology
2.
Sci Rep ; 14(1): 1412, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228608

ABSTRACT

Chagas disease is a leading cause of non-ischemic cardiomyopathy in endemic regions of Central and South America. In Belize, Triatoma dimidiata sensu lato has been identified as the predominate taxon but vectorial transmission of Chagas disease is considered to be rare in the country. We recently identified an acute case of vector-borne Chagas disease in the northern region of Belize. Here we present a subsequent investigation of triatomines collected around the case-patient's home. We identified yet undescribed species, closely related to Triatoma huehuetenanguensis vector by molecular systematics methods occurring in the peridomestic environment. The identification of a T. cruzi-positive, novel species of Triatoma in Belize indicates an increased risk of transmission to humans in the region and warrants expanded surveillance and further investigation.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Humans , Belize , Trypanosoma cruzi/genetics , Insect Vectors
3.
Microbiol Spectr ; : e0089523, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737593

ABSTRACT

Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have uniquely complex genomes, consisting of a linear chromosome and both circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of plasmids from Lyme disease causing spirochetes is more refined compared to RF Borrelia because of limited plasmid-resolved genome assemblies for the latter. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all the RF Borrelia species that we examined. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the putative expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia. IMPORTANCE Borrelia spp. spirochetes are arthropod-borne bacteria found globally that infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled in most available genome assemblies. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genome assemblies for seven Borrelia spp. found in the Western Hemisphere. This current study is an in-depth investigation into the linear plasmids that were conserved and syntenic across species. We identified differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-localized genetic elements essential for the life cycle of RF spirochetes.

4.
Exp Appl Acarol ; 91(1): 99-110, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37584844

ABSTRACT

Soft ticks from the Ornithodoros genus are vectors of relapsing fever (RF) spirochetes around the world. In Mexico, they were originally described in the 19th century. However, few recent surveillance studies have been conducted in Mexico, and regions where RF spirochetes circulate remain vague. Here, the presence of soft ticks in populated areas was assessed in two sites from the Mexican states of Aguascalientes and Zacatecas. Argasidae ticks were collected, identified by morphology and mitochondrial 16S rDNA gene sequencing, and tested for RF borreliae. The specimens in both sites were identified as Ornithodoros turicata but no RF spirochetes were detected. These findings emphasize the need to update the distribution of these ticks in multiple regions of Mexico and to determine the circulation of RF borreliosis in humans and domestic animals.


Subject(s)
Argasidae , Borrelia , Ornithodoros , Relapsing Fever , Humans , Animals , Relapsing Fever/epidemiology , Borrelia/genetics , Animals, Domestic
5.
J Med Entomol ; 60(5): 968-977, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37455018

ABSTRACT

Soft ticks (Argasidae) of the Pavlovskyella Pospelova-Shtrom subgenus are important vectors of relapsing fever spirochetes, which are agents of disease globally. South American representatives of the Pavlovskyella subgenus include 3 species: Ornithodoros (Pavlovskyella) brasiliensis Aragão, Ornithodoros (Pavlovskyella) furcosus Neumann, and Ornithodoros (Pavlovskyella) rostratus Aragão. Here, we describe a fourth species based on morphological and mitogenomic evidence of ticks collected in burrows of unknown hosts in central Chile. The larva of the new species separates from other South American soft ticks by the following combination of characters: 13 pairs of dorsolateral setae, dorsal plate hexagonal, hypostome blunt with denticles from apex almost to the base. Adults of this new species lack cheeks, possess a dorsoventral groove, and have humps, similar to O. (P.) brasiliensis; however, they lack bulging structures on the flanks of idiosoma. Moreover, females and males differ from O. (P.) rostratus by having 3 humps instead of spurs in tarsi I and from O. (P.) furcosus because of their smaller size and thinner anterior lip of the genital aperture in females. The phylogenetic analysis performed with mitogenomes of the Argasidae family depicts the new Pavlovskyella species from Chile in a monophyletic clade with other South American species in the subgenus, confirming a regional group.


Subject(s)
Acari , Argasidae , Ornithodoros , Female , Male , Animals , Argasidae/genetics , Chile , Phylogeny , Ornithodoros/genetics
6.
bioRxiv ; 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36945547

ABSTRACT

Borrelia spirochetes, causative agents of Lyme disease and relapsing fever (RF), have a uniquely complex genome consisting of a linear chromosome and circular and linear plasmids. The plasmids harbor genes important for the vector-host life cycle of these tick-borne bacteria. The role of Lyme disease causing Borrelia plasmids is more refined compared to RF spirochetes because of limited plasmid-resolved genomes for RF spirochetes. We recently addressed this limitation and found that three linear plasmid families (F6, F27, and F28) were syntenic across all species. Given this conservation, we further investigated the three plasmid families. The F6 family, also known as the megaplasmid, contained regions of repetitive DNA. The F27 was the smallest, encoding genes with unknown function. The F28 family encoded the expression locus for antigenic variation in all species except Borrelia hermsii and Borrelia anserina. Taken together, this work provides a foundation for future investigations to identify essential plasmid-localized genes that drive the vector-host life cycle of RF Borrelia . IMPORTANCE: Borrelia spp. spirochetes are arthropod-borne bacteria found globally and infect humans and other vertebrates. RF borreliae are understudied and misdiagnosed pathogens because of the vague clinical presentation of disease and the elusive feeding behavior of argasid ticks. Consequently, genomics resources for RF spirochetes have been limited. Analyses of Borrelia plasmids have been challenging because they are often highly fragmented and unassembled. By utilizing Oxford Nanopore Technologies, we recently generated plasmid-resolved genomes for seven Borrelia spp. found in the Western Hemisphere. This current study is a more in-depth investigation into the linear plasmids that were conserved and syntenic across species. This analysis determined differences in genome structure and, importantly, in antigenic variation systems between species. This work is an important step in identifying crucial plasmid-borne genetic elements essential for the life cycle of RF spirochetes.

7.
Ticks Tick Borne Dis ; 14(4): 102167, 2023 07.
Article in English | MEDLINE | ID: mdl-36965260

ABSTRACT

Human cases of relapsing fever (RF) in North America are caused primarily by Borrelia hermsii and Borrelia turicatae, which are spread by argasid (soft) ticks, and by Borrelia miyamotoi, which is transmitted by ixodid (hard) ticks. In some regions of the United States, the ranges of the hard and soft tick RF species are known to overlap; in many areas, recorded ranges of RF spirochetes overlap with Lyme disease (LD) group Borrelia spirochetes. Identification of RF clusters or cases detected in unusual geographic localities might prompt public health agencies to investigate environmental exposures, enabling prevention of additional cases through locally targeted mitigation. However, exposure risks and mitigation strategies differ among hard and soft tick RF, prompting a need for additional diagnostic strategies that differentiate hard tick from soft tick RF. We evaluated the ability of new and previously described recombinant antigens in serological assays to differentiate among prior exposures in mice to LD, soft or hard tick RF spirochetes. We extracted whole-cell protein lysates from RF Borrelia cultures and synthesized six recombinant RF antigens (Borrelia immunogenic protein A (BipA) derived from four species of RF Borrelia, glycerophosphodiester phosphodiesterase (GlpQ), and Borrelia miyamotoi membrane antigen A (BmaA)) to detect reactivity in laboratory derived (Peromyscus sp. and Mus sp.) mouse serum infected with RF and LD Borrelia species. Among 44 Borrelia exposed mouse samples tested, all five mice exposed to LD spirochetes were correctly differentiated from the 39 mice exposed to RF Borrelia using the recombinant targets. Of the 39 mice exposed to RF spirochetes, 28 were accurately categorized to species of exposure (71%). Segregation among soft tick RF species (Borrelia hermsii, Borrelia parkeri and Borrelia turicatae) was inadequate (58%) owing to observed cross-reactivity among recombinant BipA protein targets. However, among the 28 samples accurately separated to species, all were accurately assigned to soft tick or hard tick RF type. Although not adequately specific to accurately categorize exposure to soft tick RF species, the recombinant BipA protein targets from soft and hard tick RF species show utility in accurately discriminating mouse exposures to LD or RF Borrelia, and accurately segregate hard tick from soft tick RF Borrelia exposure.


Subject(s)
Argasidae , Borrelia , Ixodidae , Relapsing Fever , Tick Bites , Animals , Mice , Humans , United States , Relapsing Fever/diagnosis
8.
PLoS Negl Trop Dis ; 17(2): e0011095, 2023 02.
Article in English | MEDLINE | ID: mdl-36735632

ABSTRACT

Mosquito saliva is a mix of numerous proteins that are injected into the skin while the mosquito searches for a blood meal. While mosquito saliva is known to be immunogenic, the salivary components driving these immune responses, as well as the types of immune responses that occur, are not well characterized. We investigated the effects of one potential immunomodulatory mosquito saliva protein, sialokinin, on the human immune response. We used flow cytometry to compare human immune cell populations between humanized mice bitten by sialokinin knockout mosquitoes or injected with sialokinin, and compared them to those bitten by wild-type mosquitoes, unbitten, or saline-injected control mice. Humanized mice received 4 mosquito bites or a single injection, were euthanized after 7 days, and skin, spleen, bone marrow, and blood were harvested for immune cell profiling. Our results show that bites from sialokinin knockout mosquitoes induced monocyte and macrophage populations in the skin, blood, bone marrow, and spleens, and primarily affected CD11c- cell populations. Other increased immune cells included plasmacytoid dendritic cells in the blood, natural killer cells in the skin and blood, and CD4+ T cells in all samples analyzed. Conversely, we observed that mice bitten with sialokinin knockout mosquitoes had decreased NKT cell populations in the skin, and fewer B cells in the blood, spleen, and bone marrow. Taken together, we demonstrated that sialokinin knockout saliva induces elements of a TH1 cellular immune response, suggesting that the sialokinin peptide is inducing a TH2 cellular immune response during wild-type mosquito biting. These findings are an important step towards understanding how mosquito saliva modulates the human immune system and which components of saliva may be critical for arboviral infection. By identifying immunomodulatory salivary proteins, such as sialokinin, we can develop vaccines against mosquito saliva components and direct efforts towards blocking arboviral infections.


Subject(s)
Aedes , Saliva , Humans , Animals , Mice , Spleen , Skin , Immunity , CD4-Positive T-Lymphocytes , Mosquito Vectors , Aedes/physiology
9.
PLoS One ; 18(2): e0281942, 2023.
Article in English | MEDLINE | ID: mdl-36827340

ABSTRACT

Borrelia miyamotoi is a tick-transmitted spirochete that is genetically grouped with relapsing fever Borrelia and possesses multiple archived pseudogenes that encode variable major proteins (Vmps). Vmps are divided into two groups based on molecular size; variable large proteins (Vlps) and variable small proteins (Vsps). Relapsing fever Borrelia undergo Vmp gene conversion at a single expression locus to generate new serotypes by antigenic switching which is the basis for immune evasion that causes relapsing fever in patients. This study focused on B. miyamotoi vmp expression when spirochetes were subjected to antibody killing selection pressure. We incubated a low passage parent strain with mouse anti-B. miyamotoi polyclonal antiserum which killed the majority population, however, antibody-resistant reisolates were recovered. PCR analysis of the gene expression locus in the reisolates showed vsp1 was replaced by Vlp-encoded genes. Gel electrophoresis protein profiles and immunoblots of the reisolates revealed additional Vlps indicating that new serotype populations were selected by antibody pressure. Sequencing of amplicons from the expression locus of the reisolates confirmed the presence of a predominant majority serotype population with minority variants. These findings confirm previous work demonstrating gene conversion in B. miyamotoi and that multiple serotype populations expressing different vmps arise when subjected to antibody selection. The findings also provide evidence for spontaneous serotype variation emerging from culture growth in the absence of antibody pressure. Validation and determination of the type, number, and frequency of serotype variants that arise during animal infections await further investigations.


Subject(s)
Borrelia , Ixodes , Relapsing Fever , Ticks , Animals , Mice , Borrelia/genetics , Antibodies/genetics , Antigenic Variation
10.
Emerg Infect Dis ; 29(4): 723-733, 2023 04.
Article in English | MEDLINE | ID: mdl-36848869

ABSTRACT

To assess changes in SARS-CoV-2 spike binding antibody prevalence in the Dominican Republic and implications for immunologic protection against variants of concern, we prospectively enrolled 2,300 patients with undifferentiated febrile illnesses in a study during March 2021-August 2022. We tested serum samples for spike antibodies and tested nasopharyngeal samples for acute SARS-CoV-2 infection using a reverse transcription PCR nucleic acid amplification test. Geometric mean spike antibody titers increased from 6.6 (95% CI 5.1-8.7) binding antibody units (BAU)/mL during March-June 2021 to 1,332 (95% CI 1,055-1,682) BAU/mL during May-August 2022. Multivariable binomial odds ratios for acute infection were 0.55 (95% CI 0.40-0.74), 0.38 (95% CI 0.27-0.55), and 0.27 (95% CI 0.18-0.40) for the second, third, and fourth versus the first anti-spike quartile; findings were similar by viral strain. Combining serologic and virologic screening might enable monitoring of discrete population immunologic markers and their implications for emergent variant transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Dominican Republic/epidemiology , COVID-19/epidemiology , Antibodies, Viral , Fever , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing
11.
Sci Rep ; 12(1): 19310, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369253

ABSTRACT

The mitochondrial genome (mitogenome) has proven to be important for the taxonomy, systematics, and population genetics of ticks. However, current methods to generate mitogenomes can be cost-prohibitive at scale. To address this issue, we developed a cost-effective approach to amplify and sequence the whole mitogenome of individual tick specimens. Using two different primer sites, this approach generated two full-length mitogenome amplicons that were sequenced using the Oxford Nanopore Technologies' Mk1B sequencer. We used this approach to generate 85 individual tick mitogenomes from samples comprised of the three tick families, 11 genera, and 57 species. Twenty-six of these species did not have a complete mitogenome available on GenBank prior to this work. We benchmarked the accuracy of this approach using a subset of samples that had been previously sequenced by low-coverage Illumina genome skimming. We found our assemblies were comparable or exceeded the Illumina method, achieving a median sequence concordance of 99.98%. We further analyzed our mitogenome dataset in a mitophylogenomic analysis in the context of all three tick families. We were able to sequence 72 samples in one run and achieved a cost/sample of ~ $10 USD. This cost-effective strategy is applicable for sample identification, taxonomy, systematics, and population genetics for not only ticks but likely other metazoans; thus, making mitogenome sequencing equitable for the wider scientific community.


Subject(s)
Genome, Mitochondrial , Ticks , Humans , Animals , Genome, Mitochondrial/genetics , Phylogeny , Ticks/genetics , Sequence Analysis, DNA , High-Throughput Nucleotide Sequencing/methods
13.
BMC Genomics ; 23(1): 410, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35641918

ABSTRACT

BACKGROUND: Tick-borne relapsing fever (TBRF) is a globally prevalent, yet under-studied vector-borne disease transmitted by soft and hard bodied ticks. While soft TBRF (sTBRF) spirochetes have been described for over a century, our understanding of the molecular mechanisms facilitating vector and host adaptation is poorly understood. This is due to the complexity of their small (~ 1.5 Mb) but fragmented genomes that typically consist of a linear chromosome and both linear and circular plasmids. A majority of sTBRF spirochete genomes' plasmid sequences are either missing or are deposited as unassembled sequences. Consequently, our goal was to generate complete, plasmid-resolved genomes for a comparative analysis of sTBRF species of the Western Hemisphere. RESULTS: Utilizing a Borrelia specific pipeline, genomes of sTBRF spirochetes from the Western Hemisphere were sequenced and assembled using a combination of short- and long-read sequencing technologies. Included in the analysis were the two recently isolated species from Central and South America, Borrelia puertoricensis n. sp. and Borrelia venezuelensis, respectively. Plasmid analyses identified diverse sequences that clustered plasmids into 30 families; however, only three families were conserved and syntenic across all species. We also compared two species, B. venezuelensis and Borrelia turicatae, which were isolated ~ 6,800 km apart and from different tick vector species but were previously reported to be genetically similar. CONCLUSIONS: To truly understand the biological differences observed between species of TBRF spirochetes, complete chromosome and plasmid sequences are needed. This comparative genomic analysis highlights high chromosomal synteny across the species yet diverse plasmid composition. This was particularly true for B. turicatae and B. venezuelensis, which had high average nucleotide identity yet extensive plasmid diversity. These findings are foundational for future endeavors to evaluate the role of plasmids in vector and host adaptation.


Subject(s)
Borrelia , Relapsing Fever , Borrelia/genetics , Genomics , Humans , Plasmids/genetics , Sequence Analysis, DNA
14.
Microbiol Spectr ; 10(3): e0172221, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35579456

ABSTRACT

Tick-borne relapsing fever (TBRF) is a neglected vector-borne bacterial disease distributed worldwide. Borrelia turicatae, Borrelia parkeri, and Borrelia hermsii are three argasid-borne TBRF species previously implicated in human disease in North America. TBRF is likely underdiagnosed due to its nonspecific symptoms and poorly developed diagnostic tests. Studies suggest that the Borrelia immunogenic protein A (BipA) is specific to TBRF Borrelia but heterogenic between species. In this study, we hypothesized that antibody responses generated to BipA are specific to the North American TBRF species infecting a given animal. To test this, we characterized the expression and localization of native BipA in North American species of TBRF Borrelia. We also infected mice by needle inoculation or tick bite with B. turicatae, B. hermsii, or B. parkeri and evaluated serum sample reactivity to recombinant BipA (rBipA) that was produced from each species. Furthermore, serum samples from nonhuman primates and domestic dogs experimentally infected with B. turicatae were assessed. Lastly, we tested human Lyme disease (LD) serum samples to determine potential cross-reactivity to rBipA generated from B. turicatae, B. parkeri, and B. hermsii. Our findings indicate that rBipA has the potential to distinguish between infections of LD- and TBRF-causing spirochetes and that antibody responses were more robust toward the Borrelia species causing infection. This work further supports that rBipA can likely distinguish between B. turicatae, B. hermsii, and B. parkeri infections in mice, canines, and nonhuman primates. IMPORTANCEBorrelia species transmitted by soft or hard ticks cause tick-borne relapsing fever (TBRF). This is a debilitating disease distributed worldwide but is likely underdiagnosed or misdiagnosed as Lyme disease due to poorly developed diagnostic tests. Borrelia turicatae, Borrelia parkeri, and Borrelia hermsii are three TBRF species previously implicated in human disease in North America. Commonly used diagnostic methods do not identify the species causing infection. In this study, we evaluated the potential of recombinant Borrelia immunogenic protein A (rBipA) as a diagnostic antigen capable of distinguishing between infections of TBRF Borrelia species. We show that serum from mice, canines, and nonhuman primates infected with B. turicatae, B. parkeri, or B. hermsii react more strongly to the rBipA from the species causing infection. Furthermore, sera from Lyme disease patients failed to cross-react with our rBipA proteins, indicating the potential to use rBipA as a species-specific diagnostic antigen for TBRF.


Subject(s)
Borrelia , Lyme Disease , Relapsing Fever , Animals , Antibody Formation , Dogs , Lyme Disease/diagnosis , Mice , North America , Relapsing Fever/diagnosis , Relapsing Fever/microbiology , Relapsing Fever/veterinary , Staphylococcal Protein A
15.
Ticks Tick Borne Dis ; 13(1): 101843, 2022 01.
Article in English | MEDLINE | ID: mdl-34656944

ABSTRACT

The genome of Borrelia spp. consists of an approximate 1 megabase chromosome and multiple linear and circular plasmids. We previously described a multiplex PCR assay to detect plasmids in the North American Borrelia miyamotoi strains LB-2001 and CT13-2396. The primer pair sets specific for each plasmid were derived from the genome sequence for B. miyamotoi strain CT13-2396, because the LB-2001 complete sequence had not been generated. The recent completion of the LB-2001 genome sequence revealed a distinct number of plasmids (n = 12) that differed from CT13-2396 (n = 14). Notable was a 97-kilobase plasmid in LB-2001, not present in CT13-2396, that appeared to be a rearrangement of the circular plasmids of strain CT13-2396. Strain LB-2001 contained two plasmids, cp30-2 and cp24, that were not annotated for strain CT13-2396. Therefore, we re-evaluated the original CT13-2396-derived multiplex PCR primer pairs and determined their location in the LB-2001 plasmids. We modified the original multiplex plasmid PCR assay for strain LB-2001 to include cp30-2 and cp24. We also determined which LB-2001 plasmids corresponded to the amplicons generated from the original CT13-2396 primer sets. These observations provide a more precise plasmid profile based on the multiplex PCR assay and reflect the complexity of gene rearrangements that occur in B. miyamotoi strains isolated from the same geographic region.


Subject(s)
Borrelia , Ixodes , Animals , Borrelia/genetics , Gene Rearrangement , Genomics , Ixodes/genetics , Multiplex Polymerase Chain Reaction , Plasmids/genetics
16.
PLoS Negl Trop Dis ; 15(11): e0009868, 2021 11.
Article in English | MEDLINE | ID: mdl-34813588

ABSTRACT

Borrelia turicatae is a causative agent of tick-borne relapsing fever (TBRF) in the subtropics and tropics of the United States and Latin America. Historically, B. turicatae was thought to be maintained in enzootic cycles in rural areas. However, there is growing evidence that suggests the pathogen has established endemic foci in densely populated regions of Texas. With the growth of homelessness in the state and human activity in city parks, it was important to implement field collection efforts to identify areas where B. turicatae and its vector circulate. Between 2017 and 2020 we collected Ornithodoros turicata ticks in suburban and urban areas including public and private parks and recreational spaces. Ticks were fed on naïve mice and spirochetes were isolated from the blood. Multilocus sequence typing (MLST) was performed on eight newly obtained isolates and included previously reported sequences. The four chromosomal loci targeted for MLST were 16S ribosomal RNA (rrs), flagellin B (flaB), DNA gyrase B (gyrB), and the intergenic spacer (IGS). Given the complexity of Borrelia genomes, plasmid diversity was also evaluated. These studies indicate that the IGS locus segregates B. turicatae into four genomic types and plasmid diversity is extensive between isolates. Furthermore, B. turicatae and its vector have established endemic foci in parks and recreational areas in densely populated settings of Texas.


Subject(s)
Biodiversity , Borrelia/genetics , Borrelia/isolation & purification , Relapsing Fever/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Borrelia/classification , Borrelia/metabolism , Female , Humans , Male , Multilocus Sequence Typing , Phylogeny , Plasmids/genetics , Plasmids/metabolism , Relapsing Fever/transmission , Texas , Ticks/microbiology , Ticks/physiology
17.
Eur J Med Chem ; 225: 113767, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34450494

ABSTRACT

Zika virus belongs to the Flavivirus family of RNA viruses, which include other important human pathogens such as dengue and West Nile virus. There are no approved antiviral drugs for these viruses. The highly conserved NS2B-NS3 protease of Flavivirus is essential for the replication of these viruses and it is therefore a drug target. Compound screen followed by medicinal chemistry optimization yielded a novel series of 2,6-disubstituted indole compounds that are potent inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 320 nM. The structure-activity relationships of these and related compounds are discussed. Enzyme kinetics studies show the inhibitor 66 most likely exhibited a non-competitive mode of inhibition. In addition, this series of ZVpro inhibitors also inhibit the NS2B-NS3 protease of dengue and West Nile virus with reduced potencies. The most potent compounds 66 and 67 strongly inhibited Zika virus replication in cells with EC68 values of 1-3 µM. These compounds are novel pharmacological leads for further drug development targeting Zika virus.


Subject(s)
Antiviral Agents/pharmacology , Indoles/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Zika Virus/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , Serine Endopeptidases/metabolism , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
18.
PLoS Negl Trop Dis ; 15(8): e0009642, 2021 08.
Article in English | MEDLINE | ID: mdl-34398885

ABSTRACT

Tick-borne relapsing fever (TBRF) spirochetes are likely an overlooked cause of disease in Latin America. In Panama, the pathogens were first reported to cause human disease in the early 1900s. Recent collections of Ornithodoros puertoricensis from human dwellings in Panama prompted our interest to determine whether spirochetes still circulate in the country. Ornithodoros puertoricensis ticks were collected at field sites around the City of Panama. In the laboratory, the ticks were determined to be infected with TBRF spirochetes by transmission to mice, and we report the laboratory isolation and genetic characterization of a species of TBRF spirochete from Panama. Since this was the first isolation of a species of TBRF spirochete from Central America, we propose to designate the bacteria as Borrelia puertoricensis sp. nov. This is consistent with TBRF spirochete species nomenclature from North America that are designated after their tick vector. These findings warrant further investigations to assess the threat B. puertoricensis sp. nov. may impose on human health.


Subject(s)
Borrelia/genetics , Borrelia/isolation & purification , Ornithodoros/microbiology , Relapsing Fever/epidemiology , Tick Infestations/epidemiology , Animals , DNA, Bacterial , Feeding Behavior , Ornithodoros/genetics , Ornithodoros/physiology , Panama/epidemiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Relapsing Fever/microbiology , Rodentia/parasitology , Sequence Analysis, DNA , Tick Infestations/microbiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology
19.
PLoS Negl Trop Dis ; 15(6): e0009427, 2021 06.
Article in English | MEDLINE | ID: mdl-34106915

ABSTRACT

Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.


Subject(s)
Aedes/virology , Chikungunya Fever/pathology , Chikungunya Fever/transmission , Chikungunya virus/isolation & purification , Insect Bites and Stings , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Viral/blood , Chlorocebus aethiops , Immunoglobulin M/blood , Mice , Mosquito Vectors , Needles , RNA, Viral/blood , Serologic Tests , Vero Cells
20.
Infect Immun ; 89(6)2021 05 17.
Article in English | MEDLINE | ID: mdl-33846120

ABSTRACT

Relapsing fever (RF), caused by spirochetes of the genus Borrelia, is a globally distributed, vector-borne disease with high prevalence in developing countries. To date, signaling pathways required for infection and virulence of RF Borrelia spirochetes are unknown. Cyclic di-AMP (c-di-AMP), synthesized by diadenylate cyclases (DACs), is a second messenger predominantly found in Gram-positive organisms that is linked to virulence and essential physiological processes. Although Borrelia is Gram-negative, it encodes one DAC (CdaA), and its importance remains undefined. To investigate the contribution of c-di-AMP signaling in the RF bacterium Borrelia turicatae, a cdaA mutant was generated. The mutant was significantly attenuated during murine infection, and genetic complementation reversed this phenotype. Because c-di-AMP is essential for viability in many bacteria, whole-genome sequencing was performed on cdaA mutants, and single-nucleotide polymorphisms identified potential suppressor mutations. Additionally, conditional mutation of cdaA confirmed that CdaA is important for normal growth and physiology. Interestingly, mutation of cdaA did not affect expression of homologs of virulence regulators whose levels are impacted by c-di-AMP signaling in the Lyme disease bacterium Borrelia burgdorferi Finally, the cdaA mutant had a significant growth defect when grown with salts, at decreased osmolarity, and without pyruvate. While the salt treatment phenotype was not reversed by genetic complementation, possibly due to suppressor mutations, growth defects at decreased osmolarity and in media lacking pyruvate could be attributed directly to cdaA inactivation. Overall, these results indicate CdaA is critical for B. turicatae pathogenesis and link c-di-AMP to osmoregulation and central metabolism in RF spirochetes.


Subject(s)
Bacterial Proteins/metabolism , Borrelia/physiology , Phosphorus-Oxygen Lyases/metabolism , Relapsing Fever/microbiology , Animals , Bacterial Proteins/genetics , Borrelia/pathogenicity , Cyclic AMP/metabolism , Disease Susceptibility , Host-Pathogen Interactions , Mice , Mutation , Phosphorus-Oxygen Lyases/genetics , Relapsing Fever/metabolism , Second Messenger Systems , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...